Semestre: 5

Unité d’enseignement: UEM 3.1

Matière 3: TP Systèmes asservis

VHS: 22h30 (TP: 1h30)

Crédits: 2

Coefficient: 1

Objectifs de l’enseignement:

Compléter, consolider et vérifier les connaissances déjà acquises dans le cours.

The finite volume method (FVM) is a method for representing and evaluating partial differential equations in the form of algebraic equations. In the finite volume method, volume integrals in a partial differential equation that contain a divergence term are converted to surface integrals, using the divergence theorem. These terms are then evaluated as fluxes at the surfaces of each finite volume. Because the flux entering a given volume is identical to that leaving the adjacent volume, these methods are conservative. Another advantage of the finite volume method is that it is easily formulated to allow for unstructured meshes. The method is used in many computational fluid dynamics packages. "Finite volume" refers to the small volume surrounding each node point on a mesh.

Finite volume methods can be compared and contrasted with the finite difference methods, which approximate derivatives using nodal values, or finite element methods, which create local approximations of a solution using local data, and construct a global approximation by stitching them together. In contrast a finite volume method evaluates exact expressions for the average value of the solution over some volume, and uses this data to construct approximations of the solution within cells.

Turbomachinery, in mechanical engineering, describes machines that transfer energy between a rotor and a fluid, including both turbines and compressors. While a turbine transfers energy from a fluid to a rotor, a compressor transfers energy from a rotor to a fluid.

These two types of machines are governed by the same basic relationships including Newton's second Law of Motion and Euler's pump and turbine equation for compressible fluids. Centrifugal pumps are also turbomachines that transfer energy from a rotor to a fluid, usually a liquid, while turbines and compressors usually work with a gas.

This course is an introduction to the control of linear systems. Thus, the first chapter will allow us to define control (statement of the problem). In the second chapter, we will define linear systems and their models. This first chapter will enable us to:

-        Define an automatic system.

-        Define the possible structures of an automatic system.

-        Provide the technical means of implementation.

-        Specify the steps in the design of an automatic system.

تم إعداد هذا المقرر الدراسي لتوضيح كيفية انجاز درس على الخط

Le cours "logique combinatoire et séquentielle" vise à :

  • Comprendre la notion de systèmes de numération.
  • Comprendre le principe de fonctionnement des circuits numériques sur la base de l'algèbre de Boole.
  • Appliquer les règles de l'algèbre de Boole.
  • Connaître les circuits combinatoires usuels.
  • Savoir représenter quelques applications des circuits combinatoires en utilisant les outils standard que sont les tables de vérité, les tables de Karnaugh.
  • Introduire les circuits séquentiels à travers les circuits bascules et les compteurs. 
  • Appliquer les opérations arithmétiques dans les différents systèmes de numération.